<sup id="9bi9v"></sup>
  • <form id="9bi9v"><optgroup id="9bi9v"></optgroup></form>
    1. <rp id="9bi9v"></rp>
      <td id="9bi9v"><optgroup id="9bi9v"></optgroup></td>

      當(dāng)前位置: 主頁(yè) > 數(shù)學(xué) >

      2017年MBA數(shù)學(xué)考試輔導(dǎo):必背公式(12)

      2016-05-11 14:34 | 太奇MBA網(wǎng)

      管理類(lèi)碩士官方備考群,考生互動(dòng),擇校評(píng)估,真題討論 點(diǎn)擊加入備考群>>

        三角函數(shù):

        兩角和公式

        sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA

        cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB

        tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)

        ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)

        倍角公式

        tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga

        cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a

        半角公式

        sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)

        cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)

        tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))

        ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))

        和差化積

        2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)

        2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)

        sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)

        tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB

        ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB

        某些數(shù)列前n項(xiàng)和

        1+2+3+4+5+6+7+8+9+…+n=n(n+1)/2 1+3+5+7+9+11+13+15+…+(2n-1)=n2

        2+4+6+8+10+12+14+…+(2n)=n(n+1) 1^2+2^2+3^2+4^2+5^2+6^2+7^2+8^2+…+n^2=n(n+1)(2n+1)/6

        1^3+2^3+3^3+4^3+5^3+6^3+…n^3=(n(n+1)/2)^2 1*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3

        正弦定理 a/sinA=b/sinB=c/sinC=2R 注: 其中 R 表示三角形的外接圓半徑

        余弦定理 b2=a2+c2-2accosB 注:角B是邊a和邊c的夾角

        相關(guān)鏈接:

        MBA2017入學(xué)考試輔導(dǎo)招生簡(jiǎn)章

      返回頂部
      小sao货水好多真紧h无码视频,手机AV在线不卡网址,美女丝袜足脚交一区二区,曰韩aⅴ人妻丝袜中文字幕
      <sup id="9bi9v"></sup>
    2. <form id="9bi9v"><optgroup id="9bi9v"></optgroup></form>
      1. <rp id="9bi9v"></rp>
        <td id="9bi9v"><optgroup id="9bi9v"></optgroup></td>